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1. INTRODUCTION

The cluster variation method (CVM), proposed by Kikuchi [1] in 1951, is
a statistical mechanics method to calculate the mixing entropy of a solid
solution, which takes into account the effects of temperature and inter-
action energy between atoms on the entropy of mixing. In contrast to
the point approximations of Bragg and Williams [2] and Bethe [3], the
nearest-neighbor interaction energy described by the pair approximation of

The phase equilibrium between structural phases with a magnetic transition is
investigated using the CV-pair approximation of the cluster variation method
(CVM). By the geometric analysis of the grand potential, it is demonstrated that
the grand potential and effective chemical potential of the different structural
phases with a magnetic transition can be separated into paramagnetic and
magnetic terms. In addition, the molar grand potential-effective chemical potential
curve can be obtained from the relevant molar energy diagram. A calculation
method for the phase equilibrium between structural phases with a magnetic
transition is proposed; this method is applied to the a/y phase equilibrium in the
Fe-Mn binary system, and the calculated phase diagram closely approximates
the experimental diagram.



where Fp is the molar free energy of the paramagnetic phase and the molar
free energy equals the sum of the paramagnetic free energy and the
magnetic transition free energy.

For the molar free energy of the paramagnetic term, the nearest-
neighbor pair interactions are described by the CV-pair approximation of
the CVM. The approximations lead to results numerically more accurate
than those of Braggs and Willians [2] and of Bethe [3]. With CV-pair

the CVM is more accurate than that in Refs. 2 and 3. The CVM using the
natural iteration method (NIM) with absolute convergence can effectively
calculate the phase equilibria between the same structural phases [4]. In
recent years the CVM has been given widespread attention by phase
diagram researchers and has been developed further and applied in phase
equilibrium calculations [5, 6]. It has shown many advantages for order-
disorder transitions and miscibility gap calculations [7, 8]. However, so
far, it is still not reported that the CVM is applied to the calculation of
phase equilibrium between different structural phases with a magnetic tran-
sition. This may be because it is very difficult to construct the magnetic
transition by the first principle, and it is not suitable to the natural itera-
tion calculation. Sanchez and Lin [9] proposed a magnetic transition
model based on the CVM, but this model is suitable only for a fee structure
and has not yet been applied to an actual alloy system. Therefore, we try
to combine the CVM with the present magnetic transition free energy
models such as the Hillert et al. [10] and Nishizawa et al. [11] models to
calculate the phase equilibrium between structural phases with a magnetic
transition. In this paper, the free energies of structural phases with a
magnetic transition are investigated using the CV-pair approximation of
the CVM and the Nishizawa et al. magnetic transition model. Geometrical
analysis of the grand potential for a solution with a magnetic transition
is first carried out, then a method of calculating the phase equilibrium
between the different structural phases with a magnetic transition is
proposed. Therefore, the applied range of the CVM is extended, and its
practicality is enhanced.

2. MODEL OF ENERGY

Compared to the nonmagnetic solution, the molar free energy of the
solution with a magnetic transition is changed. It is assumed that the
changed magnetic transition free energy is AFm. The molar free energy of
the ferromagnetic phase Fm is
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where AUp and Sp are described by the CVM.
On the other hand, in this paper, the magnetic transition free energy

is given in the Nishizawa et al. model,

Thus, the molar free energy of the paramagnetic phase in the solution
can be generally expressed by the CVM as follows:

where the °ui, and 0Fi are the internal energy and free energy of pure com-
ponent i, respectively.

The second term in Eq. (3) expresses the internal energy of mixing of
solution, and given Ae i j = e i j — (eij + £ i j)/2, then

The first term in Eq. (3) expresses the linear sum of internal energies for
two components before mixing, and

where N0 is Avogadro's number, R is the gas constant, e,-, is the interaction
energy between atom i and atom j, ytj is the probability of the i-j atom
pair, x, is the mole fraction of component i', and xi = Z jy i j .

The internal energy in Eq. (2) can be further separated into

approximation, the lattice structure is taken into account through the coor-
dination number 2co. The molar internal energy Up and molar entropy of
mixing Sp are
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which indicates that the average value of chemical potentials for each com-
ponent is chosen as zero.

where F is the Helmholtz free energy and Ni and n, are the number of
atoms and chemical potential of component i, respectively. However, it is
important to note that the chemical potential ui in Eq. (8) differs from the
actual chemical potential u'i of solution corresponding to a certain com-
position, and in this paper, we call ui the effective chemical potential. The
following relation exists among the effective chemical potentials,

where Tc and °7^ are the Curie temperatures of the solution and compo-
nent 1, respectively.

3. GEOMETRICAL ANALYSIS OF THE GRAND POTENTIAL

In the CVM, the grand potential is regarded as the thermodynamic
potential to analyze the phase equilibrium. Our research group has
analyzed geometrically the grand potential of a nonmagnetic solution [ 12]
and provided the correlation between the molar free energy diagram and
grand potential-effective chemical potential diagram. The present study
provides the first geometrical analysis of the grand potential for a solution
with a magnetic transition; and determine the effect of the magnetic transi-
tion on the grand potential.

For an ^-component system, the function of the grand potential is
defined by
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where m, is the magnetic coefficient. It is assumed, for simplifying the
analysis, that m,= 1 for all the nonmagnetic alloying elements and m,- = 0
for Co and Ni. Tc and °Tc are the Curie temperatures of the solution and
pure iron, respectively, and [A°F F e (T*)~] m is the ferromagnetic free energy
of pure iron at the temperature T*, T* = ( 0 T C / T C ) .

In the binary system, it is assumed the component 1 is Fe, and compo-
nent 2 is the other nonmagnetic or magnetic element. Then, the magnetic
transition energy can be expressed by



Fig. 1. Expression of the grand potential in the molar
free energy diagram.
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When both sides of Eq. (8) are divided by the total number of atoms
jV and multiplied by Avogadro's number, the molar grand potential is
obtained:

where Fm is the molar Helmholtz free energy, ft, and x, are the molar effec-
tive chemical potential and mole fraction of component i, respectively, and
Zi=1xi= 1.

Figure 1 shows a molar free energy diagram of a solution with a
magnetic transition in a binary system. The shaded part is the free energy
caused by the magnetic transition. For composition x2> the molar free
energy in the paramagnetic state, Fp, is line ac, and the magnetic transition
free energy, AFm, is line cc'. The molar free energy in the ferromagnetic
state at this composition, F™, equals Fp + AFm (line ac'}. The tangent of



Using the above method, we can obtain

The tangent of the free energy curve of the ferromagnetic state is made
through point c1; then the chemical potentials in the ferromagnetic state are

This is an important equation of the grand potential, which reveals the
relation between the grand potential and the chemical potential.

The relationships for the paramagnetic state among the effective
chemical potentials, the chemical potentials, and the grand potential can
also be obtained

For an n-multicomponent system,

It can be seen from Fig. 1 that line be equals line oe'. This means that the
Gp equals the distance from the middle point o to the cross point e'
between the connected line [u'1]

 p [u'2]
p and line oe', and the following

equation is obtained.

the free energy curve in the paramagnetic state is made through point r;
then the chemical potentials in the paramagnetic state, [y'1]p and [ u ' 2 ] p ,
are obtained. A line, which is parallel to the connected line between [u'1]

p

and [//2]P, is made through the middle point o of the abscissa (.t = 0.5);
then the effective chemical potentials of the paramagnetic state for two
components, np and up, which satisfy Eq. (9), are obtained, and line ah
equals the £x,up . According to the definition of the grand potential, the
grand potential of the paramagnetic state at this composition is
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The molar grand potential and effective chemical potential of solution
at a fixed composition can be directly obtained from the molar free energy
(Fm — x,) diagram by the analysis given above. As shown in Fig. 2, the
grand-potential, effective chemical-potential (Gm—,«,) diagram of a solu-
tion with a magnetic transition can be drawn by the geometrical method
presented here. The correlation of grand potentials between ferromagnetic
and paramagnetic states at the same composition is also given in Fig. 2.
Figure 2a gives the molar free energy diagram and the correlative G m — u i

curve. It can be seen that due to the magnetic transition, the effective
chemical potential of the ferromagnetic state is lower than that of the
paramagnetic state for a solution at the same composition, and the grand
potential of the ferromagnetic state is lower than that of the paramagnetic
state at the same effective chemical potential. Thus, there is a difference in
the grand potential between the ferromagnetic and the paramagnetic states
for a solution at the same composition, and the larger is the free energy

It is known from Eq. (14) that the grand potential in the ferromagnetic
state can be expressed by the sum of the grand potential in the para-
magnetic state (paramagnetic grand potential) and the grand potential
caused by the magnetic transition (magnetic grand potential). The chemical
potential can also be separated into paramagnetic and magnetic terms, i.e.,
for the effective chemical potential, um = up + Aum, and £ A/n™ = 0, and for
the chemical potential [n'i]m = [u'i]

p + ^[u'i]
m. Similarly, the following

equations for the ferromagnetic state can also be obtained,
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and the z/[u'i]
m and 4um are the chemical potential and effective chemical

potential caused by the magnetic transition. Here they are called the
magnetic chemical potential and the magnetic effective chemical potential,
respectively. Thus, the grand potential in the ferromagnetic state of solu-
tion at the composition x2 can be analyzed as follows:



Fig. 2. Correlation between the Fm — xi and the Gm — ni, diagrams.
(a) Correlation between the Fm — xi and the Gm —ui diagrams in the
case without miscibility; (b) the miscibility gap is formed due to the
magnetic transition; (c) the miscibility gap increases because of the
magnetic transition; (d) the phase equilibrium is between structural
phases.

caused by the magnetic transition, the larger is this difference. For example,
when the composition of a solution is at point a on the Fm — xf curve, the
ferromagnetic and paramagnetic states are points a and a', respectively, on
the Gm—fj., curve. Figure 2b shows the case where the solution in a para-
magnetic state is in the single phase, and the miscibility gap is formed due
to the magnetic transition. At this temperature, the equilibrium composi-
tions are at points b' and f.

762 Yuan, Pan, Liu, and Hao



It can also be seen from the G,,,—^, diagram that the grand potential
for the paramagnetic state is the curve abed, and there is not a cross point
on this curve; the grand potential in the ferromagnetic state is the curve
a'b'c'd', and there is a cross point b'(f) which corresponds to the phase
equilibrium. Figure 2c shows the case where the solution is in a para-
magnetic state with a miscibility gap, and the miscibility increases because
of the magnetic transition. Two phase equilibria exist in the Fm — x,
diagram; one is a metastable phase equilibrium between point b and point h,
and the other is a stable phase equilibrium between point c' and point i.
These points correspond, respectively, to two cross points, b(h) and c'(i),
in the G m - /u i - diagram. It can be seen that the grand potential of point c'(i)
is lower than that of point h(h). Figure 2d shows the case where the phase

Fig. 2. (Continued)
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In the equilibrium condition, 5Gm/3yij = 0

If A Um and Sm are described by the CV-pair approximation, the molar free
energy of mixing is

and the molar grand potentials for the a and ft phases can be given as
follows:

equilibrium is between different structural phases; the a phase is the solu-
tion with a magnetic transition, and the ft phase is nonmagnetic. In the
Gm — Uj diagram, the points b and a' correspond to the phase equilibrium
between the ft and the a phases in the paramagnetic state and the phase
equilibrium between the B and the a phases in the ferromagnetic state,
respectively. The grand potential of point a' is lower than that of point />,
which indicates that the phase equilibrium between the (1 and the a phases
in the ferromagnetic state is stable.

4. METHOD OF PHASE EQULLIBRIUM CALCULATION

If the a and /? phases are nonmagnetic, for the calculation of the phase
equilibrium between the a and the /5 phases, it is assumed that the free
energies of pure component i for the a and ft phases are °F°t and °Fb,
which are equal to zero and z / 0 F a - / ? ( 0 F f - 0 F 7 ) , respectively. Thus, the
molar free energies for a and /? can be expressed, respectively, by
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The molar grand potentials for the a phase in the paramagnetic state and
the ft phase are described by the CVM, and the magnetic grand potential
of the a phase is derived from the Nishizawa et al. [11] model. For the x
phase, the equilibrium composition is not directly obtained from Eq. (20)
by the NIM; this is because that there is no symmetric form in Eq. (20) due
to the magnetic grand potential, zfaGm, and the absolute convergence of the

From Eqs. (18) and (19), it can be seen that the phase transformation free
energy of the pure component, — d ° F a - P / R T , increases only in the pair
probability of the ft phase for the phase equilibrium calculation of two-
phase equilibrium by the CVM, and other terms are the same as for the
calculation of phase equilibrium between the same structural phases.

In the calculation of phase equilibrium between the a and the fi
phases, the curves of grand potentials for the two phases are calculated by
the NIM, and the cross point of grand potentials for the a and ft phases
is determined by the dichotomous natural iteration method (DNIM) [ 13].
After doing this, the equilibrium compositions of the a and ft phases can
be obtained.

For the solution with a magnetic transition, the method of phase equi-
librium calculation is presented in detail for the following two cases, i.e.,
the phase equilibrium between ferromagnetic and nonmagnetic phases and
the phase equilibrium between two ferromagnetic phases.

If the phase equilibrium is between ferromagnetic and nonmagnetic
phases, it is assumed that the a phase is ferromagnetic, and the ft phase is
nonmagnetic. According to the geometric analysis of the grand potential
above, the molar grand potential of the a phase, "G™, can be separated
into paramagnetic and magnetic terms, aGJ and A^Gm, respectively.

or
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Then the effective chemical potential is obtained,

When the above procedure is repeated, the entire curves of grand potentials
for the a and f} phases are obtained.

where [AQH1(T*)']m is the ferromagnetic enthalpy of component 1 at the
temperature T*. Based on Eqs. (21) to (23), the magnetic grand potential
at composition x2 is obtained. Thus, the grand potential in the ferro-
magnetic state at the composition x2,

xG™, can be calculated.
From the Eq. (15), the magnetic effective chemical potentials are

The ^["X-]m is the magnetic chemical potential of the a phase. According
to the Nishizawa et al. magnetic transition free energy model for the binary
system, the A['*-/j'i~]m can be derived as

NIM cannot be assured. Therefore, we propose a calculation method of
phase equilibrium between structural phases with a magnetic transition by
combining the NIM with the present magnetic transition free energy
model. The calculation procedure of this method is introduced as follows.

A chemical potential is chosen as the effective chemical potential of the
a phase in the paramagnetic state "JLI, and the equilibrium composition x2

and the molar grand potential of the paramagnetic state aG£ correspond-
ing to the "y/f can be obtained by means of the NIM. According to the
geometric analysis of the grand potential above, the magnetic grand poten-
tial is expressed as
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The paramagnetic grand potentials for the a and ft phases, *C7£, and b G f ,
are calculated by the CVM with the NIM, and the magnetic grand poten-
tials for the a and ft phases are derived from the magnetic transition model.

The calculated procedure of the grand potential is shown in Fig. 4.
A chemical potential is given as the paramagnetic effective chemical poten-
tial of the a phase, T/i2, the ferromagnetic grand potential of the a phase
corresponding to "^f + zF^T is calculated, and then the */<? + A*n™ is
regarded as the paramagnetic effective chemical potential of the ft phase.

Finally, the cross point of *Gm and bGm is sought by the DNIM. The
DNIM used in this paper, which is used to determine the cross point of
grand potentials for a solution with magnetic transition, is slightly different
from the DNIM in Ref. 13. As shown in Fig. 3, in the nth iteration, if the
iteration direction sign AGn( = *Gn-bGI), AGn + 1( = *Gn+ 1 - "Gn+1,) are
unequal, this indicates that the cross point of grand potential is between
nup + nX2 and n + 1u2 + n + 1 V2. But in the next iteration, the input value of
the effective chemical potential, n + 2u2, is (nup +n + 1 Vp)/2 rather than
[(X + W) + (" + V£ + " + y2')]/2.

If the phase equilibrium is between two ferromagnetic phases, i.e., both
the a and the ft phases are ferromagnetic, the grand potential can be
expressed as

Fig. 3. Schematic diagram of the DNIM used
in the phase equilibrium calculation between a
ferromagnetic phase and a nonmagnetic phase.
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Fig. 5. The calculated a/y phase equi-
librium in the Fe-Mn system in this paper.
The calculated a./y phase boundaries using
the CV-pair approximation of the CVM for
energy are given by solid lines. The experi-
mental boundaries from Ref. 17 are given by
dashed lines.

Fig. 4. Schematic diagram of phase
equilibrium calculation between two ferro-
magnetic phases.
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Similarly, the terromagnetic grand potential of the p phase corresponding
to "(1% + A^fi™ + d^ft™ is calculated. The above procedure is repeated,
through a series of a^£, to determine the cross points of grand potentials
for the two phases, and the equilibrium compositions can be obtained.

In this paper, the a./y phase equilibrium in the Fe-Mn binary alloy is
calculated by CV-pair approximation according to the above method. The
interaction energies between Fe and Mn for the a and ft phases are
estimated from the interaction parameters of the a and /? phases [14],
[4eMn]para=-344.9 J.mol-1 ,e f eMn=-646.8 + 21.6(xMn-xFe)J.mor1.
The phase transition free energies for pure Fe and Mn are taken from
Refs. 15 and 16 respectively. The calculated result is shown in Fig. 5,
and a comparison with the experimental result [17] is made. It can be seen
that the two results are in good agreement, which indicates that the above
method is suitable to calculate the phase equilibrium between the different
structural phases with a magnetic transition.

5. CONCLUSION

For the structural phases with a magnetic transition, the molar free
energy can be well described by the CV-pair approximation of the CVM
combined with the Nishizawa et al. magnetic transition free energy model.
The molar grand-potential effective chemical-potential curve can be obtained
from the relevant molar free energy diagram by geometric analysis of the
grand potential, and the grand potential and chemical potential can be
separated into paramagnetic and magnetic terms, respectively, i.e., Gm =
Gp + AGm and nm=tp + Anm. A calculation method of the phase equi-
librium between the structural phases with a magnetic transition by the
CVM is proposed, and it is applied to the a/y phase equilibrium in the
Fe-Mn binary system. The result shows that this method is reliable.
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